Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248985

RESUMO

Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading to flaking and cracking. With the aim of recognizing the most dangerous fungal species to the integrity and stability of paintings, we studied 55 recently isolated and identified strains from historic paintings or depositories, including 46 species from 16 genera. The fungi were categorized as xero/halotolerant or xero/halophilic based on their preference for solutes (glycerol or NaCl) that lower the water activity (aw) of the medium. Accordingly, the aw value of all further test media had to be adjusted to allow the growth of xero/halophilic species. The isolates were tested for growth at 15, 24 °C and 37 °C. The biodeterioration potential of the fungi was evaluated by screening their acidification properties, their ability to excrete pigments and their enzymatic activities, which were selected based on the available nutrients in paintings on canvas. A DNase test was performed to determine whether the selected fungi could utilize DNA of dead microbial cells that may be covering surfaces of the painting. The sequestration of Fe, which is made available through the production of siderophores, was also tested. The ability to degrade aromatic and aliphatic substrates was investigated to consider the potential degradation of synthetic restoration materials. Xerotolerant and moderately xerophilic species showed a broader spectrum of enzymatic activities than obligate xerophilic species: urease, ß-glucosidase, and esterase predominated, while obligate xerophiles mostly exhibited ß-glucosidase, DNase, and urease activity. Xerotolerant and moderately xerophilic species with the highest degradation potential belong to the genus Penicillium, while Aspergillus penicillioides and A. salinicola represent obligately xerophilic species with the most diverse degradation potential in low aw environments.

2.
Front Microbiol ; 14: 1258670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029120

RESUMO

Historically valuable canvas paintings are often exposed to conditions enabling microbial deterioration. Painting materials, mainly of organic origin, in combination with high humidity and other environmental conditions, favor microbial metabolism and growth. These preconditions are often present during exhibitions or storage in old buildings, such as churches and castles, and also in museum storage depositories. The accumulated dust serves as an inoculum for both indoor and outdoor fungi. In our study, we present the results on cultivable fungi isolated from 24 canvas paintings, mainly exhibited in Slovenian sacral buildings, dating from the 16th to 21st centuries. Fungi were isolated from the front and back of damaged and undamaged surfaces of the paintings using culture media with high- and low-water activity. A total of 465 isolates were identified using current taxonomic DNA markers and assigned to 37 genera and 98 species. The most abundant genus was Aspergillus, represented by 32 species, of which 9 xerophilic species are for the first time mentioned in contaminated paintings. In addition to the most abundant xerophilic A. vitricola, A. destruens, A. tardicrescens, and A. magnivesiculatus, xerophilic Wallemia muriae and W. canadensis, xerotolerant Penicillium chrysogenum, P. brevicompactum, P. corylophilum, and xerotolerant Cladosporium species were most frequent. When machine learning methods were used to predict the relationship between fungal contamination, damage to the painting, and the type of material present, proteins were identified as one of the most important factors and cracked paint was identified as a hotspot for fungal growth. Aspergillus species colonize paintings regardless of materials, while Wallemia spp. can be associated with animal fat. Culture media with low-water activity are suggested in such inventories to isolate and obtain an overview of fungi that are actively contaminating paintings stored indoors at low relative humidity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-21190892

RESUMO

The investigation and characterisation of historical objects can be an exacting piece of work because of the small quantity of material that can be investigated and the degradation of the material and its value, which sometimes demands only non-destructive methods. In this study, as one such method, Raman spectroscopy was used to investigate the cellulose fibres of painting canvases and linings. Historical samples of fabrics were taken from different paintings and their linings from different locations in Slovenia. Raman spectra were recorded on the fibres of these historical samples. Additionally, a database of the Raman spectra of modern cellulose fibres was created and compared with the literature data. Differences in the Raman spectra of different cellulose fibres were observed, and on this basis fibres of different types were discriminated. The recorded Raman spectra of historical samples were compared with the database spectra of modern cellulose fibres. Strong luminescence effects because of the changes caused by ageing, degradation products and surface contamination caused difficulties in interpreting the Raman spectra of historical fibres. The luminescence effects were partly overcome by prolonged exposition times and previous "signal quenching" with the laser. The Raman spectra of historical cotton showed no luminescence effects, and only slight differences to the reference spectra of modern cotton fibres appeared, whereas the Raman spectra of historical flax fibres were overwhelmed with luminescence and showed changes in spectra through degradation. The research showed that by using Raman spectroscopy the identification and differentiation of different cellulose fibres and materials that accompany cellulose in the fibres are possible and that degraded and aged material can be differentiated.


Assuntos
Celulose/análise , Celulose/química , Pinturas , Análise Espectral Raman/métodos , Têxteis/análise , Cannabis/química , Fibra de Algodão , Linho/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...